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ABSTRACT I
{

An algorithm for best approximating in the sup-norm a function

f e c[0,1]2 by functions from tensor-product spaces of the form

n, @ cl[o,1] & C[O,1] ® « is considered. For the case k= £ =0

k Lt
the Diliberto and Straus algorithm is known to converge. A straight-
forward generalization of this algorithm to general k,% is formulated,

and an example is constructed demonstrating that this algorithm

does not converge for k2 + 2.2 > 0.
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SIGNIFICANCE AND EXPLANATION

Often it is desirable to approximate a given function as closely as
possible by a member of a class of functions that are simpler to evaluate.

For a general continuous function of two variables f£f(x,y) a best
approximating function of the simpler form h(y) + g(x) can be computed
by the algorithm of Diliberto and Straus. Since such an approximation
can be quite far from the approximated function, a better approximation
of the form .f hi(y)xi + % qi(x)yi is considered. One way to try
to construct :;gh an approxi::tion is to generalize the Diliberto and
Straus algorithm to this more general setting. The generalized algorithm
is simple in the sense that only one~dimensional best approximations by
polynomials have to be computed. In this note it is shown by a simple

example, that this "natural"” generalization cannot be expected to con-

verge, and therefore other methods should be developed .
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A STRAIGHTFORWARD GENERALIZATION
OF DILIBERTO AND STRAUS' ALGORITHM DOES NUT WORK

Nira Richter-Dyn

The algorithm of Diliberto and Straus for approximating a bivariate function by a
sum of univariate ones proposed in 1951 {1], has been recently investigated in several
works (2], [3], [4], where convergence and various properties of the algoritm are
studied.

The algorithm, designed for computing the best approximation to f ¢ 0::(0,1]2 in
the sup-norm from the space
() M= {sletx,1) € 0,11, s0x,y) = hiy) + gtn)},
is of the following form:

to(x,y) = f(x,y)

1
f (x,y) = £ (x,y} -5 [ max £_(g,y) + min f£_ (E,y)]),
2n+l 2n 2 0_<_E_<_12n 055112"
2) 0= 0, e b
b
f (x,y) = f (x,y)-%[ max £ (x,n) + min f {(x,n1l
2n+2 2n+l 2 0<ns< 1 2n+1 0<n<1 2n+l
n=20,1,... .

It is proved in (1], (3], (4] that limlif Il = infllf-¢ll, although the rate of convergence
might be extremely slow [2]. Algorit;::(m can g?interpreted as a sequence of repéated
applicitions of the operator of one dimensional best approximation by constants to

f(x,y), regarded alternately as a function of x and as a function of y . More specif-
ically, let :.rx be the operator associating with f£f(x,y) ¢ c[o,l)2 the function

(fo) {y) € cl[0,1], with (fo) (yo) the constant of best approximation to f(x,yo) in
the sup-norm on [0,1], and let Jy be defined similarly with the roles of x,y inter-
changed. Then (2) can be rewritten as

(3) fo-f, f =f ~J £ ,f

an+1"FonIxfon £ -J £ n=0,1,2,... -

-
2n+2 2n+l y 2n+l’
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This formulation suggests a straightforward generalization of algorithm (3), namely

best approximating f£(x,y) alternately in the x and y directions by polynamials
of degree k and 2 respectively, in order to obtain a best approximation to £(x,y)

from the tensor-product space

k L
(4) M, = o0y o0y € cro, 11,6,y = § nwxd+ § g x1y7) =
. 3 3
j=0 j=0
= "k ® c[o0,1]) @ Cc[0,1] @ LIS
(uk denotes the space of all univariate polynomials of degree < k.) With this nota-

tion the subspace M in (1) is the tensor-product space M The generalization of

0,0 °
algoxithm (3) to this more general setting is

(k)
(%) fotr Tonnrfon Vs fon

£ iy

2n+2= 2n+l 'y n=0,1,2,...

2n+l’

k
where (J’(‘k)f) (x,yo) = Z hj (yo)xj is the polynomial of best approximation to f(x,yo)

j=0
in the sup-norm on [0,1] from LI and where (J;“ £f) (xo,y) is similarly defined.

In the following we present a simple example demonstrating that algorithm (5) for
general k,% cannot be expected to converge to a best approximation to fo(x,y) . We

construct a function f(x,y) such that [Ifll > inf |If-¢ll, while the functions {fn}
¢6M0’1
generated from it by (5) with k=0,2=1 satisfy Ilfnll = ||fll for all n -

Consider f£(x,y) c[o,112 subject to the following conditions:
£0dd) o 0™, seai2ie,2m2, 490,152

e03d - 03, e
(6)
e - (0?, se0a,2

[£x,p) | <1 elsewhere in [0,11% .

As can be easily observed

(a;°’:) (x3) =0, 1=0,1,...,6 and (a;”

and both !-J;O)t and !-\1;1){ satisfy (6). Thus algorithm (5) with k=0,8=1

£)( %'Y)-Oo i=0,1,2,3,4 ,

genera“es » sequence {!n} of functions satisfying (6) whenever fo satisfies (6),

and therefore IIf Il = 1 for all (n > 0.
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In order to verify that Ifll > inf Ng-¢ll, it is sufficient to show that there
PeM
0,1 2
does not exist a bounded linear functional wue (C[0,117)', u¥ O, such that

(7 (¢,u) =0 for all ¢€H°'1 7

(8) (g,ud= Ml .

Indeed any u¥0 with property (8) is necessarily of the form

r

(9) Cgoud = ] a.p(x.,v.), e c10,112, with r > 0, a.f(x.,y.) = |a.], 3=0,....x,
PO G e s SR B b

namely a linear combination of function values at extremal points of £ . Moreover

condition (7) implies that u can be written as a linear combination of first differences
in the x direction so as to vanish on all functions of the form h(y), and as a linear
combination of second order divided differences in the y direction, so as to vanish
on all functions of the form go(x) + gl(x)y &

These characteristics of u are consistent with the special structure of the 15
extremal points of f , as given in (6), only if r=14 in (9). Then u can be written
as

4
(10) (goud = J b 1z

i=0
where [ ] it denotes the second order divided difference of ;(%,y) at the extremal
points of f with x—-: . The sum (10) can be rewritten as a linear combination of
first differences in the x direction only if Cqer =+ 1Cy satisfy the following system

of linear equations:
c c

c
S S Y

c. =¢.=C,, C =3, C o 15 S 5%t 7 ¢

01 "2 Tk

which admits only the trivial solution.
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